Friday, December 27, 2019

Expository Paper - Free Essay Example

Sample details Pages: 4 Words: 1147 Downloads: 2 Date added: 2018/12/18 Category Literature Essay Type Critical essay Level High school Topics: Learning Essay Did you like this example? Introduction The expository paper is a category of the essay that requires the student to develop an argument concerning the idea in that paper whether its clear and concise manner. A written good essay allows the reader to understand the information in the essay. To develop a good essay there are the guidelines that need to be followed. Don’t waste time! Our writers will create an original "Expository Paper" essay for you Create order Examples the writer has to decide what he wants to write, preparing the outlines of the topics. The writer has to write a thesis statement which introduces the essay which explains the discussed topics. Proper use of grammar and punctuation have to be used, the writer is also required to develop clear and understandable paragraph in the body. Moreover, conclusions at the end are important because of the recommendation of the discussed topic. When this all guidelines are applied in the essay the students will able to pass the information and hence get the good grade. Sonny blues is an essay written by James Baldwin, the essay is not clear and concise manner because of the following reason. Introduction format Firstly, the introduction in the essay is not in a concise manner, a good introduction prepares the person reading the information. The introduction should inform and give the facts of the topic straight up. Also gives the reader the interest in reading the story, it attracts the minds due to proper arrangement of the flow of the story. After reading the introduction the reader is able to tell what the topic is about and the expectation. In the sonny blues essay, the introduction is not clear and its hard to explain the information conveyed by the writer. They are also poor grammar and punctuation in the introduction which contributes to a poor grade (Irmscher, p, 30). The writer has repeated word many times in the introduction ?I read this makes the introduction to be boring and difficult to understand. The writer has also used poor grammar in the introduction example ?spelling out the story this makes the reader become bored and may not get the information the writer is conveying . Transition In addition, the writer of Sonny blues has not used transition in the essay. Transition words are used to link words, sentence and the phrases in the essay. They attract the mind of the reader and give him the deeper understanding of the story. Transition words assist the reader to progress from the one information to the next information in the paragraph. They also improve the information conveyed by giving the sentence weight, especially where they are important information that the writer wants to convey. Moreover, the transition words build up coherent relationship inside the text. The Sonny blues essay lack transition words in the paragraph, this make it difficult to understand the information that the writer is conveying. The writer could have used the transition word so that he can be able to attract the reader attention. Lack of transition word in the essay makes it more boring and the reader may ignore some part of it hence missing the information conveyed. Topic sentence Furthermore, the Sonny blues essay lack the topic sentence which is very important when writing an essay. The topic sentence helps the reader to identify the main idea in the paragraph; it always appears first before starting the paragraph. The topic sentence introduces the point the writer wants to talk about, it usually guides the reader when reading. It also shows the flow of the story the writer is narrating, this helps the reader to capture the message in an easier war. The writer of the Sonny blues did not use the topic sentence in the essay; this makes reading difficult to understand what the writer is talking about. It hard to understand some sentence in the paragraph this result to different ideas in the same paragraph; these ideas tend to confuse the reader. Topic sentence mostly attracts the reader attention and gives him the moral of reading the story, in the Sonny blues the writer have to ignore the topic sentence hence boring the reader. Short paragraph containing different ideas Additionally, the writer of Sonny blues has used short paragraph which has no meaning. He has also used the wrong paragraph which the sentence has been repeated several. The paragraph in an essay should discuss ideas in the sentence topic, this attract the mind of the reader and get the information easily. The effective paragraph contains the following topic sentence which contains the ideas to be discussed in the paragraph. Coherence is another factor to be considered, which refer to how the flow of ideas has been discussed in the paragraph. Moreover, the paragraph should be adequately developed this describes and explain the topic sentence. And also they should be unity of sentence; this explains how the ideas of the paragraph have been connected together. Through the paragraph will able to convey the message the writer is trying to, this will attract the reader attention and also been able to understand the story. The Sonny blues story paragraph have not been constructed well, s ome paragraph contains more than one idea which results in different ideas in one paragraph. This tends to confuse the reader and may get tired of reading the story. Wrong punctuation Additionally, the writer in the Sonny blues has punctuated the sentence wrong resulting in different information from which he wants to narrate. Punctuation is the application of conventional signs and spacing. Punctuation allows correct reading of the paragraph and also helps the reader to understand the information or the story narrated by the writer. English punctuation is a must because the reader cannot understand the information communicated without punctuation marks. In the Sonny blues, the writer has used punctuation wrong making difficult to understand the story he is narrating. He has used wrong punctuation in the conversation example, sure, I said. You do that. So long this is wrong conversation statements it confuses the reader and he may lack to get the information the writer is conveying. Conclusions In conclusions, to develop a good essay they are some important factor should be considered. These are proper punctuation, topic sentence, use of grammar and vocabulary. These factors help the reader to get the information conveyed by the writer. When they have ignored especially the punctuation they tend to change the information of the writer. Proper punctuation, good grammar, and use of topic sentence they attract the attention of the reader. This helps him to understand and have the moral of reading the story. The writer in Sonny blues has ignored this factor resulting in poor essay format and different ideology in the same paragraph. Works Cited Hidi, Suzanne, and Valerie Anderson. Situational interest and its impact on reading and expository writing. The role of interest in learning and development 11 (1992): 213-214. Irmscher, William F. Teaching expository writing. Harcourt School, 1979.

Thursday, December 19, 2019

A Midsummer Nights Dream Research Paper (with Cited)

The play, A Midsummer Nights Dream by William Shakespeare, is about four lovers and their dreamlike adventure through a fairy ruled forest. There are many different characters in this play and they each play their own individual role in how the play is performed and read. Three main characters that showed great characteristics are: Puck, Tom Bottom, and Helena. The play, A Midsummer Nights Dream by William Shakespeare, uses characters and their conflicts to give meaning to this piece of literature. A Midsummer Nights Dream was written in the early part of William Shakespeares life in 1596. It was written to be played at artistic carnivals and tried to please all parts of society; the carpenters to please all the galleries,†¦show more content†¦Give me your hands, if we be friends, And Robin shall restore amends. Nick Bottom is another comical character that makes the audience laughs from his overconfidence in him. He is one of the central figures in the subplot of the production of the Pyamus and Thisbe story. He brings his comedy from his extraordinary belief in his own abilities. Bottom thinks he is perfect at everything he does, yet he is a horrible actor and frequently makes rhetorical and grammatical mistakes in his speech. His humor stems from the fact that hes not aware of how ridiculous he is. Titania falls madly in love with Bottom after she was anointed with a love potion and Bottoms head has been turned into that of an ass. He thinks nothing out of the ordinary about a fairy queen that has fallen in deeply in love with him. His inability to perceive the fact that his head had been transformed and a fairy queen has fallen in love with him parallels how absurd he is. Although Puck and Bottom may stand out as two of the main characters they arent involved in the main conflict. Helena, who is desperately in love with Demetrius, may be the most drawn out character. Helena is he one lover who thinks more about the nature of love than the actual thing. She is extremely unsure about herself and thinks about her appearance a lot andShow MoreRelated Renaissance Family Values and Their Significance to As You Like It1920 Words   |  8 PagesRenaissance Family Values and Their Significance to As You Like It      Ã‚  Ã‚  Ã‚   When I began my research for this paper, I did not have a good understanding of the term Renaissance.   Therefore, I thought that it was a good idea to clarify on this before I tried to learn about what family life was like at that time, and I also thought it might be interesting to look at Shakespeares family.    The word Renaissance means rebirth and refers to the 15th Century, between the years 1350 andRead MoreAnalyzing Mr. Keating’s Teaching Concept in Dead Poets Society from Progressivism4764 Words   |  20 Pagesshadow and becomes confident and gregarious. Under the edification of the Poetry Society, Neil listens to inner voice and found his real ideal. In spite of his father’s opposition, he successfully starred in the play A Midsummer Night’s Dream. 1.2 Overseas and Domestic Research Status According to the document literature, there are not many domestic scholars study on education through Dead Poets Society. The articles one-sidedly analyze the teaching methods, teaching concept or teacher-studentRead MoreDeveloping Management Skills404131 Words   |  1617 PagesManager: Kelly Warsak Senior Operations Supervisor: Arnold Vila Operations Specialist: Ilene Kahn Senior Art Director: Janet Slowik Interior Design: Suzanne Duda and Michael Fruhbeis Permissions Project Manager: Shannon Barbe Manager, Cover Visual Research Permissions: Karen Sanatar Manager Central Design: Jayne Conte Cover Art: Getty Images, Inc. Cover Design: Suzanne Duda Lead Media Project Manager: Denise Vaughn Full-Service Project Management: Sharon Anderson/BookMasters, Inc. Composition: Integra

Wednesday, December 11, 2019

Communication Skill free essay sample

International Conference Conferences, Symposia and Campus Events 2006 The Integration of Professional Communication Skills into Engineering Education Dorthy Missingham University of Adelaide Originally published in the Proceedings of the EDU-COM 2006 International Conference. Engagement and Empowerment: New Opportunities for Growth in Higher Education, Edith Cowan University, Perth Western Australia, 22-24 November 2006. This Conference Proceeding is posted at Research Online. http://ro. ecu. edu. au/ceducom/91 Missingham, D. The Universtiy of Adelaide, Australia. The Integration of Professional Communication Skills into Engineering Education Dr Dorthy Missingham School of Mechanical Engineering The University of Adelaide. Australia dorothy. [emailprotected] edu. au ABSTRACT Conventional Engineering curriculum is strongly focused on the development in students of technical knowledge and skills. However, in recent years, employers have increasingly acknowledged that this traditional preparation of Engineering students‘ is inadequate, as graduates lack the wide range of written and spoken communication skills required to engage with members of other professional groups and with the broader community. Recognition of the important role that communicative competence plays in professional success within the engineering industry has, as a result, led to a number of tertiary institutions developing curricula to address these needs. This paper presents a successful integrative Engineering Communication curriculum, developed for both local and international Engineering students in an Australian university, which aims to develop both communicative ability and community engagement. The courses that form the Engineering Communication Program provide for critical awareness-raising of community issues such as ethics, sustainability and gender, English for academic and professional Engineering purposes for both English as an Additional Language (EAL) and English background students and advanced research communication for postgraduate students. All courses are strongly informed by scaffolded learning techniques, systemic functional linguistics and genre theory, and most are run collaboratively by Engineering, Education and Applied Linguistics lecturers. The aims of the Program are to raise awareness in Engineering students about, and to equip them with skills for, their future roles and responsibilities, and to provide the community with engineers whose strong technical knowledge is balanced by an appreciation of the broader social contexts with which they will engage in their professional lives. INTRODUCTION The need for engineering students to acquire professional skills, in addition to technical skills, in order to enhance both community engagement and career success has been increasingly articulated by educators and industry professionals alike. Professional skills mentioned variously include teamwork, conflict resolution, and an awareness of social justice, sustainability and ethics. However, as highlighted by Adams and Missingham (2006) the need for improved communicative competence in engineering graduates has been the professional skills area most widely discussed in research and the engineering profession. Increasingly, engineers work in knowledge-intensive fields that require both high level communication and problem-solving skills (Alvesson 2004). In the Australian setting this need is recognised in the National Generic Competence Standards formulated by Engineers Australia, which extensively refers to communicative abilities throughout its descriptors of competencies required by engineers (IE Aust 1999). However, research on employer satisfaction with engineering graduates‘ communication skills indicates they are below desired requirements, both in Australia (DEETYA 2000) and abroad (Lee 2003). This paper discusses a successful integrative Engineering Communication curriculum, developed for both local and international Engineering students in The University of Adelaide, which aims to develop both communicative ability, and an understanding of the need and ability for community engagement. The paper begins with a brief comparative examination of engineering communication education in other universities, both in Australia and overseas. 346 COMPARATIVE APPROACHES The critical role that communicative competence plays in both academic and professional success has, over the past decade, been recognised nationally and internationally in a number of tertiary institutions involved in engineering education (Najar 2001, Riemer 2002, Einstein 2002). A review of literature, relating to engineering communication education, reveals several significant trends common both within Australia and overseas. These trends identify three major areas of academic and professional engineering communication recognised by educators as important skills needed by graduating engineers. The teaching of oral communication, written communication and teamwork skills have been introduced as part of the undergraduate engineering curricula in various Universities world wide (Einstein 2002, Schowm Hirsch 1999). Whilst the combination of communication skills taught and the methodologies used may vary between institutions one particular theme or approach frequently emerges. An interdisciplinary approach to the teaching and learning of engineering communication (Artemeva, Logie St-Martin 1999, Jennings Ferguson 1995) is being practiced by a small but increasing number of engineering faculties and colleges. Examination of interdisciplinary approaches is important in relation to the integrative approach used by engineering and communication educators within the School of Mechanical Engineering at the University of Adelaide. In this respect, learning and teaching of oral and written communication skills in engineering communication curricula have been examined whereas team work skills have not been specifically examined for this particular discussion, as it is considered as worthy of separate dedicated research . Studies undertaken within Australian universities attest the need for high level communication skills. According to Najar (2001) communicative competence, including teamwork and professional writing skills for example, the ability to ? research, write and format basic research reports‘ as well as developing formal oral presentation skills is important to prepare students for both ?academic success and the workplace‘. Similarly Riemer (2002) claims that whilst engineering knowledge and technical expertise are important attributes the graduate engineer must be able to present this knowledge ? ith an excellent standard of communication skills‘. However, where Najar emphasises written and teamwork communication skills, Riemer (2002) claims that emphasis on oral communication skills is highly valued by employers. Riemer further elabourates that oral communication and presentation skills are ? career enhancers‘ which may be considered as ? the biggest single factor in determining a student‘s career success or failure‘ (Beder 2000 cited in Riemer 2002). Despite the apparent emphasis that Riemer places on oral communication skills he also acknowledges that there are a number of areas of communication skills which are necessary for engineers, including written communication skills, technical terminology and professional jargon. The later two areas are probably best described in linguistic terms such as genre and discourse, which are indicative that for each specific discipline there is an accompanying language culture. Internationally, universities are also engaged in the teaching and learning of engineering communication skills. Einstein in his 2002 overview of changes in engineering education at the Massachusetts Institute of Technology (MIT) describes a new approach implemented in the School of Civil Engineering which was developed in response to the view that what was being taught in universities was increasingly divorced from practice. As a result twelve courses were either created or developed in most of which ? regular oral, written and illustrated presentations‘ were required. Similarly Carlton University in Canada also recognised that the engineering discipline had specific needs in the teaching and learning of communication skills (Artemeva et al 1999). These needs related directly to the transition of engineering students from an ? academic to a workplace environment‘. In the case of Carlton University engineering communication studies emphasise written communication skills. The Carlton University approach described by Artemeva et al (1999) is in contrast to Riemers (2002) theoretical proposition on the prominence required in developing oral communication skills for the workplace. One other key difference in Riemers (2002) paper to the approaches suggested by Artemeva et al (1999) as well as Najar (2001) and Einstein (2002), is that Artemeva et al, Najar and Einstein are all overviewing programs of engineering communication already in existence. A common theme emergent in the literature is that many institutions recommend an interdisciplinary approach to the teaching and learning of engineering communication. Various researchers and educators claim that linking acquisition of academic communication skills to authentic engineering tasks 347 both challenges students negative attitudes, towards what they term ? earning English‘, as well as promotes student motivation. Shwom and Hirsch (1999) claim that shared agenda between disciplines recognises the equal status of engineering and communication, or the ? equal place at centre stage of the course‘. This view is also reinforced by Jennnings and Ferguson in their 2002 study, of communication engineering skills in Queen‘s University, Belfast, which states that through linking the study of communication skills to the exploration of engineering issues that communication skills become a key element in the educational process. Furthermore, ? here is a greater likelihood that students will develop a better overall perspective on their (engineering) subject‘. Significantly, many courses which have implemented an interdisciplinary approach have combined the teaching of communication skills with engineering design subjects. In an approach similar to that of the School of Mechanical Engineering, at The University of Adelaide, engineering schools at Northwestern University, USA, Massachusetts Institute of Technology, Harvard and Flinders University, South Australia advocate an interdisciplinary approach that combines engineering communication with engineering design. In reference to the program at Northwestern University, Shwom Hirsch (1999), claim that design and communication are ? ideal partners‘ and that students ? combined knowledge of both fields will make them both better designers and better communicators‘. Additionally students are convinced of the importance of communication in engineering. Of the interdisciplinary approach taken at MIT, Einstein (2002) describes design as a synthesising process which requires various visual, written and problem solving skills inferring therefore that it is the natural setting for teaching and learning communication skills. He goes on to state that ? design (synthesis), coordination and communication‘ are regarded as the major features of the MIT , Civil and Environmental approach to engineering education. Najar (2001) discusses the Language in Use (LIU) modules linked directly to engineering design project work at Flinders University. A notable similarity with the approach of Adelaide University‘s School of Mechanical Engineering approach is that the development of students engineering knowledge is supported in an integrated way by the acquisition of professional and academic communication skills. Skills common to both universities include; how to communicate orally, how to research, and how to write and format research reports. Similarly the interdisciplinary approach employed in the Civil Engineering Department at Queens University, Belfast covers related communication issues in use of the library (how to research), English composition and technical report writing (written communication) and Public speaking (oral communication). Additionally Queens University covers poster presentation (visual communication) an area that the Adelaide University program covers in fourth year but which is not mentioned in the Flinders University program. It is apparent from the literature therefore, that the need for communicative competence in engineering education has been recognised in a number of places worldwide. In particular, an interdisciplinary education approach in engineering communication has been introduced in a range of Universities which offer engineering studies. Despite some differences in the methodologies, curricula and elements of communication addressed by different universities, including the University of Adelaide, these studies indicate that the synthesis of engineering design, which is inherently practical in nature, with the need to communicate the design process and outcomes is both an ideal setting and an important factor for positively influencing student motivation and skills in the study of professional communication. By promoting a shared agenda between disciplines the literature also suggests that this may also promote student recognition of the importance of communication in engineering. Regardless of the similarities and differences of engineering communication education taken by the programs discussed here the literature agrees that increased levels of communicative competence relate directly to employability and success in the engineering industry. THE ADELAIDE APPROACH Background The teaching of professional communication skills within the School of Mechanical Engineering at the University of Adelaide has evolved over a number of years since the mid 1990s. This evolution has experienced different iterations with the current approach developing more directly from a combination of initiatives taken both within the Faculty of Engineering and the School of Mechanical Engineering, and by the then Advisory Centre for University Education (ACUE), now the Centre for Learning and 348 Professional Development (CLPD). These initiatives led to the creation of various courses in Engineering Communication including courses for International Students. The Faculty wide Engineering Communication (EAL) course was traditionally managed by the School of Mechanical Engineering. In Semester 2, 2006 this course was transferred to management by the Faculty Academic Registrar in order to reflect the Faculty wide nature of the need for dedicated engineering communication course for international undergraduates. Within the School other initiatives led to the teaching of Engineering Communication to 3rd year students. Initially taught as a separate subject this course was combined with the Level III Design in 2004. In the same year the School of Mechanical Engineering also created a new course, Engineering Planning Design and Communication (EPDC), for entry level students. The Mechanical Engineering Communication approach consists of a fully integrated, nested curriculum of courses, designed to; explicitly link communication learning to learning in engineering at all year levels, ? develop students‘ ability to construct and present logical argument discursively, ? oster language development from sentence level skills to large document written and oral communication, ? encourage active participation through class discussion and response to formative feedback, ? foster the ability to communicate problem identification, formulation and solution to diverse audiences and ? use development in communicative ability as a vehicle for fostering students‘ insight into and perspective on engineeri ng practice in the community, including the social, cultural, political, international and environmental context of professional engineering practice. Each course in the program, illustrated below in Figure 1, addresses these aims while embedded within either broader Engineering course curricula or, in the case of Engineering Communication EAL, within a curriculum that employs specific strategies that address the needs of EAL Engineering students (Adams Missingham 2006). 349 EPDC Level I 2 Engineer Communication EAL 1 Design Practice Level I I 2 Engineering and the Environment Level III 2 Design Commun. Level III 2 Research Communication Program 1 Design Project Level IV 2 (Postgraduate) Figure 1: Mechanical Engineering Communication courses showing their relationships to each other and the broader Engineering curriculum. 1 for students enrolled in all Engineering disciplines 2 for students enrolled in Mechanical Engineering Theory The theoretical underpinning of the first year Engineering Planning Design and Communication course and the third year Design and Communication course is based on the notion of ? ocial constuctivism‘ as advanced by Vygotsky. In particular, Bruners‘ concept of ? scaffolded‘ learning (Wood, Bruner Rose 1975) informs the student based approach that is centred on active participatory curricula which aims at assisting students to develop increasingly skilled levels of academic and professional communication. Social constructivism grew from a view that educational methods needed to be base concepts of learning beyond rote memorisation, ? egurgitationâ₠¬Ëœ of facts and the division of knowledge into different subjects. Early approaches sought to provide appropriate learning situations where teachers allowed students to develop their own knowledge, meaning and truth in a context which would enable them to use the learning throughout their life. Vygotsky developed this philosophy, noting that ? the central fact about our psychology is the fact of mediation‘ (Vygotsky 1978 p. 166). Social constructivists consider that the dynamic interaction between instructors, learners and tasks provides the opportunity for learners to create their own understanding through the interaction with others and is the most optimal learning environment. The constructivist approach, guiding the Mechanical Engineering communication courses is further reinforced in the application of Brunerian notions of the ? spiral curriculum‘. Bruner postulated that ? A curriculum as it develops should revisit the basic ideas repeatedly, building on them until the student has grasped the full formal apparatus that goes with them‘ (Bruner 1960) p. 3). 350 In the School of Mechanical Engineering these theories guide the designing of courses which are aimed at developing generic language skills which can be used as the basis for current and future application within the engineering industry, rather than a language course focussed solely on communicating engineering terms. The learning and t eaching of communication skills across all levels of the undergraduate program enables scaffolding of knowledge to be integrated rather than focussing on a short d of student teacher interaction. Through this approach skills acquired in first year communication are reinforced in second year Design Practice, extended and elaborated on in the level III course and then reinforced again through workshops and practice in the fourth year Design Project. Borrowing from neuroscience research into learning. the 2006 Level III and semester 2 EAL students have informed the idea of a concept of developing an habitual intellectual framework. Whilst relying on heavily on scaffolded learning, this concept also aims to redress some of the negative perceptions that engineering student have about ? earning English‘ by encouraging students to acquire higher cognition learning in communication skills which they can then apply as habit. PRACTICE AND PERCEPTION Three dedicated communication courses are provided at undergraduate level, Engineering Communication EAL (English as an Additional Language), Engineering Design Planning and Communication (Level I) and Design and Communication (Level III). The overall aim of the three courses is to provide students with an nderstanding of the importance of communication to the professional engineer and to equip them with the necessary knowledge, skills, flexibility and confidence to be good engineering communicators. Through the application of Student Experience of Teaching and Learning (SELT) surveys students are able to comment on and assess the effectiveness of the courses to their needs. At the same time instructors are able to monitor student needs and make appropriate changes to the curriculum and methodology if required. Engineering Communication EAL Engineering Communication EAL was designed specifically to meet the particular needs of international students and to be complementary to the technical engineering courses students undertake to complete their degrees. Through a variety of formal and informal learning strategies students are introduced to and practice basic research techniques. These techniques include ? locating, critically reading and interpreting academically acceptable sources ? presenting their analysis in the form of evidenced based propositions with sources integrated appropriately ? resenting the argument in both a written and an oral form suitable for an academic audience. The strategies used emphasise participation and practice as key elements to becoming effective communicators. Therefore, classes are very active, sometimes rowdy and frequently fun with group discussions and impromptu presentations of issues, group and individual exercises integrated with peer teaching/learning through guided presentation of answers to the class, and open class discussion inviting students to academically critique their own and others responses. Student Experience of Teaching and Learning (SELT) surveys consistently indicate that learning outcomes for students are enhanced by ? full participation on (sic) the aims of the course‘, ? giving feedback to students about their participation‘, adjusting the teaching ? of various topics accordingly (sic) to the class – enabling faster, more effective learning‘, ? very dynamic lessons‘ and being ? able to stimulate my learning‘. Formal assessment strategies involve a series of formative assessments which involve students applying feedback provided to a subsequent assignment. Student comments indicate that this approach is highly effective. Design and Communication courses The Engineering Design Planning and Communication (Level I) and Design and Communication (Level III) courses are provided for all students undertaking degree programs in the School of Mechanical Engineering. The integration of communication and engineering design was devised specifically to emphasise the importance of professional engineering communication and to ensure that communication is not seen by students as a stand alone subject that can be completed and then forgotten about. The effectiveness of this approach in highlighting the importance of communication has been recognised by students who report that the course(s) ? improves your speaking and writing skills‘, 351 ?helps with the written work in other subjects‘, they have ? learnt how to write for university assignments‘, and ? learning academic writing (is) useful to further years of study‘. A number of students have explicitly stated that the course taught them ? to communicate effectively and should be compulsory for all engineer‘?. These comments are also consistent with graduate attributes specified as important not only by the Faculty but also by the engineering industry, including ? the ? ability to communicate effectively‘, ? the ? ability to undertake problem identification, formulation and solution‘ ? the acquisition of skills to enable the ? pursuit of life long learning‘. Course material is also designed to be complementary to the Engineering Communication EAL course by providing reinforcement of and extension to the skills learnt. For example, the Level I course provides students with the additional educational framework and the opportunity to apply skills learnt in ESL to the needs of report writing and the oral presentation of progress reports on a Planning and Design project. Student feedback through SELT surveys consistently evidence the importance of these skills, for example, ? It was great knowing how to structure a report properly‘ and the ? introduction to engineering report writing is very comprehensive‘. A further integrative approach that has been taken in the Level I and Level III courses is reflected in the establishment of the relationships with prior learning and future learning. For example, Level III examines structure, cohesion, critical thinking and analysis, the use of evidence, presenting arguments both in written and oral form and report writing at a more advanced level than the Level I course. The Level III communication course is also an important prerequisite to level the IV Design Project, where all students must write an extensive design report and present a professional seminar on their project. Challenges and Outcomes Empirical and anecdotal evidence indicates that engineers are poor communicators and that one of the factors which influences student choice in undertaking engineering studies is the belief they will not need ? English?. Therefore, discussions and exercises are designed to encourage students to participate and practice skills, to be flexible in their approach to language and its uses, to contribute their ideas, to build on their strengths and to develop confidence. The value placed on practical evidencing of communication is reflected in a participation mark, worth 20% of the total assessment. As a result classes are noisy and dynamic. Students also find that effective communication can be both useful and enjoyable. For example, SELT comments show ? I like the idea of students presenting ideas on overheads (transparencies) in class activities‘, the course ? keeps people interested in tasks that could be very boring‘, ? A good environment for learning is provided‘ and ? interactivity of the class in tasks helps us to gain a better understanding of the subject‘. Similar strategies of regular class and group discussions as well as workshop exercises are used throughout the courses to ensure students regularly practice the skills of communication. Student response indicates that group learning and discussion ? stimulates learning without placing student under pressure‘ and that all students‘are able to learn something regardless of language ability‘. Individual students and groups are invited to present analyses and answers to the whole class and then to call for comments from their peers. The importance to student learning of this approach is exemplified in the following SELT comment ? Doing exercises and presentations in class forced me to do the work which I otherwise would not have touched if it had been set as homework. I appreciate that. Students are encouraged to form cross cultural groups during classes, so that a greater understanding of diversity and its value in engineering is promoted. At the same time students must undertake practical work in developing effective team work skills in order to be able to complete tasks and class based exercises. Students frequently comment that the group work is th e best aspect of the course as it provides opportunity to improve interpersonal communication skills and to gain a real sense of diversity through their interaction with students of different socio-cultural, and ethnic backgrounds. Student comments indicate that working in cross cultural groups encourages ? acceptance of all ideas‘. Students discuss and at times challenge the characteristics of English for academic and professional purposes as presented in these courses. In doing so, students become increasingly aware of how purpose and socio-cultural factors shape the kind of language used in different contexts rather than 352 viewing language as simply correct or incorrect, or based predominantly on the rules of grammar. Issues of ethics and social responsibility arise naturally in relation to topics and lecturers encourage students to discuss these in class. Similarly communication and management themes highlight the nontechnical role aspects of engineering. Students have reflected that ? This (allows you to) practice skills you actually need‘ and there is a ? good balance for a broad variety of skills‘ development. Links to industry expectations are also reinforced through guest presentations from graduate engineers, Engineers Australia and industry leaders. In these way students are encouraged to broaden their perception of the engineering industry as a technical culture to include the understanding that engineering is also a communicative culture. Formal Assessment of Student Work A series of formal assessments, both oral and written are also undertaken to ensure that students can also apply research and analytical skills in a ? planned and timely manner‘ as highlighted by engineering graduate attributes. Formative feedback is given on all assignments in order that students may take full advantage of self directed learning. Students who apply the feedback to subsequent assignments are rewarded for both the attempt and the quality of the improvements made. Students report that this approach provides ? constructive criticism‘ which ? helps each student‘ to ? check their drafts carefully‘. Assessment criteria and their relationship to graduate attributes are fully discussed in both the course notes and in conjunction with exercises, and students have expressed this helps them to place learning in the context of professional and industry expectations, ? hen it‘s explained, it makes sense that engineers spend so much time writing reports, talking to clients and presenting project ideas to meetings‘. RESEARCH TOPICS AND TOPICAL RESEARCH To broaden student awareness of their professional responsibilities as engineers within society, in addition to operating within a company framework, research topics are carefully chosen to reflect community and industry concerns. In particular th e topics chosen provide for critical awareness-raising of community issues such as ethics, sustainability and social justice. For example, the research topic for the current semesters Engineering Communication EAL course is the Role of Engineers, through which students are exploring issues such as personal and interpersonal skills, engineering education and life long learning, ethical responsibilities, social and environmental factors, holistic thinking, entrepreneurship as well as technical skills. Previous topics have included an examination of gender issues in engineering education and the profession, forensic engineering, and the effects of teamwork on the outcomes of engineering projects. The imbedded nature of the Engineering Communications courses within the engineering curriculum ensures that the research topics are relevant to engineering practice, topical and frequently devised in collaboration with engineering lecturers. Level III Design and Communication research topics, for example, are devised together with the design lecturer and sometimes also with reference to other departmental members. The current semesters‘ research topic was directly linked to the Design Project topics. These topics and the communication research topic specifically designed to be co-related. Through this collaborative approach aspect of sustainability in engineering practice are reinforced and student skills in critical thinking, analysis and evaluation of research information are further developed. In Design the projects are to design a Formula SAE Car, Bio-Oil Trike, Biodiesel Bike, 1. 0 litre Biodiesel Taxi Tuk-Tuk, Hybrid Solar Electric Vehicle, Biodiesel Boat, Formula SAE Aircraft, Alternative Energy 2-Seater Aircraft, Hybrid Solar/Biofuel Generator, Fossil-Fuel-Free irrigation system or a Nano-satellite. The topic for the Communication assignments is ? ustainability‘, applied to the chosen design project. , as outlined below. Topic The broad objective of sustainable development is ? to achieve social justice, sustainable economies, and environmental sustainability? ( European Conference on Sustainable Cities Towns, 1994). Australia has a National Strategy for Ecologically Sustainable Development which aims to ? meet the needs of Australians today, while con serving our ecosystems for the benefit of future generations? (Office of Sustainability, Department of Environment and Heritage, 2006). 53 Task Environmental sustainability is a fundamental aspect of sustainability. For your Communication assignments you should identify how environmentally sustainable features can be incorporated in the design of your project, for example a bio-diesel boat, or alternative energy 2-seater aircraft. In addition, you should compare the effects of these features to a traditionally designed version of your project. You are not expected to justify sustainability. Your research must focus on the specific features of sustainable transport. Yong Missingham, 2006) Previous research topics have included the following: Investigate an ethical dilemma in an engineering project, and critically evaluate the response of the engineering company or companies involved, in terms of relevant tenets of the IEAust Code of Ethics. (Yong Missingham, 2005) Select an example of technological development that is prominent in industrialised society and analyse the benefits as well as the adverse effects of this technology to individuals, society and the environment. Yong Missingham, 2004) A high level of both professional communication skills and an appreciation of community concerns required to be developed by the Level III Mechanical Engineering students. The topic descriptions have also been carefully devised to illustrate to students the inter-relationship of effective communication and an understanding of the social, cultural, political, international and environmental impacts implicit in the professional practice of engineering. These expectations are detailed in the Research Topic paper given below. ?Your research is to be based on a topic which has social, cultural, economic, and/or political implications. Engineers work in every sphere of life. As a professional engineer you will be working in an array of industries, in various contexts, and making contact with many people about professional organisations, government departments and agencies, allied industries and organisations, academics, and others. As an effective communicator and decision maker, you will need to be able to present your interpretation and findings on a range of issues, as will occur in the negotiation and management of projects, the submission of tenders, and the advising of clients. The topic for your research in this subject aims to provide you will strategies to both write and talk about your interpretation and findings about diverse issues. Your writing and your presentations will be an attempt to convince a nonspecialist audience of your point of view. You may choose one of the following areas of research for your project. Topic A – the impact of engineering projects on local communities The projects you may work on as an engineer could have significant social, cultural, economic, and/or political implications for people and communities who are not directly involved in the implementation of the project. Your research task is to: Discuss an engineering project which has, or has had, a significant impact/s on local communities Your research is to examine the impacts and outcomes of a specific engineering project on a community or communities. Examples of engineering projects could be dams or hydro-electric projects, weapons testing, mining, the building and operation of chemical or other industrial plants, building roads and railways, and others. The size of the project is unimportant, rather it is its impact on the local community which will be the focus of your research. The impacts could be one of the following scenarios, or a combination of scenarios: ? Well recognised and integrated into the planning of the engineering project, yet have provided, or are providing, difficulties in the implementation and outcomes of the project ? Recognised by the local communities or interest groups, but rejected or ignored by project planners and workers ? Unrealised in past projects, with the long-term consequences now the subject of community and/or legal dispute. 354 Your discussion needs to be an examination, that is, an analysis of the impacts arising from the project. Avoid lengthy descriptions of the history of the project, the engineering technicalities, or merely describing the impacts. You need to read as widely as possible about the project you have chosen, and from your interpretation of the source information provide a discussion of the (perhaps disputed) impact/s of the project. Limit your scope so that you have a specialised focus, that is, analyse only two or three impacts of the project. The word limit set for your assignments means you will not be able to cover all aspects of the project. Your focus needs to be an in-depth examination rather than a broad sweep of issues. Topic B – the impact of seemingly simple technology on the existence of communities. This topic also aims to examine the impact of (seemingly simple) technology on the existence and quality of life for those who use or used the technology. Your task is to: Discuss the impact of a seemingly simple technology on the existence of a community This research topic involves examining the design logic underpinning the technology and importantly the effectiveness of its use. Examples of apparently simple technology could be the boomerang, other hunting implements, for example, harpoons and poison arrows, a specific type of irrigation system, terracing for the cultivation of crops, and others. Your research needs to take account of: ? The design logic underpinning the technology ? The quality of life and survival provided for those who used the technology ? Any evidence which debates the effectiveness of technology, particularly its long term use. The technology you are examining may have been beneficial for a community in the short term, but in the longer term, further developments, modifications, abandonment of the technology, may have ensured a better quality of life, even survival, of a community. Long term environmental impacts could be important in your study. Your discussion needs to be an analysis of the effectiveness, or otherwise, of the technology. Avoid lengthy descriptions of the history or the form of the technology. This information needs to be only brief background information. You need to read as widely as possible about the technology you have chosen, and from your interpretation of the source information provide a discussion of the (perhaps disputed) effects of its use. Limit your scope so that you have a specialised focus, that is, on the analysis of two or three aspects of effectiveness of the technology. The technology could be from any era, past or even present day. If you are examining past technology, your focus needs to be on the effectiveness, or otherwise, of the technology itself for its intended purpose regardless of other influencing factors such as the introduction of other technology as a result of invasion, colonisation, or economic factors. Alternatively, the technology could be in current use or development, such as reversions to more environmentally sustainable technologies, for example, wind power. (Wake, 2002) CONCLUSION By promoting a shared agenda between language and engineering disciplines it is suggested that this may also promote student recognition of the importance of communication in engineering. Regardless of the similarities and differences of engineering communication education taken by various programs discussed here, increased levels of communicative competence relate directly to employability and success in the engineering industry. The program developed by School of Mechanical Engineering at the University of Adelaide represents a successful integrative Engineering Communication curriculum, developed for both local and international Engineering students in an Australian university, which aims to develop communicative ability, community engagement and an awareness of the social, cultural, political, international, environmental and ethical contexts in which professional engineers practice. 55 ACKNOWLEDEMENTS Thanks go to many colleagues and friends, and to staff and students of the School of Mechanical Engineering who provided input (often unwittingly) to this research proposal. Thank you to Karen Adams for the stimulating and frequent discussions on many things educational and philosophical and Colin Kestell engineering lecturer extraordinaire who can always be relied on to stimulate teaching enthusiasm and creativity. Many thanks go to wonderful colleagues Elizabeth Yong and Kristin Munday whose considerable work is also represented here, and to Catherine Irving and Patricia Zoltan whose support, intellectual contributions and hard work have also contributed to this program. Thank you also to Barbara Wake whose commitment to and knowledge of academic communication which, together with the vision of Colin Hansen, Head of the School of Mechanical Engineering have enabled the development of such a successful program of professional and academic engineering communication. Special thanks to Roxanne Missingham for the editing and encouragement. REFERENCE Adams, K D Missingham (2006) Contributions to Student Learning: An overview of Engineering Communication courses in Mechanical Engineering education, School of Mechanical Engineering, University of Adelaide, unpublished (internal) report. Alvesson, M (2004) Knowledge Work and Knowledge-intensive Firms, Oxford University Press, Oxford. Artemeva, Natasha, Logie, Susan St-Martin, Jennie (1999) ? From Page to Stage: How Theories of Genre and Situated Learning Help Introduce Engineering Students to Discipline-Specific Communication? Technical Communication Quarterly, Summer, vol. 8, no. 3, pp. 301-316. Bruner, J (1960) The Process of Education, Harvard University Press, Cambridge, Mass. Department of Employment, Education, Training and Youth Affairs (2000) Employer satisfaction with graduate skills: research report, by AC Nielsen, DEETYA, Canberra. Einstein, H Herbert 2002, ? Engineering Change at MIT†˜, Civil Engineering, October, vol. 72, i. 10, pp. 62-69. European Conference on Sustainable Cities Towns, Aalborg, Denmark, 1994, Charter of European Cities and Towns Towards Sustainability, p. http://ec. europa. eu/environment/urban/pdf/aalborg_charter. pdfgt; viewed 21 July, 2006 Institution of Engineers Australia (1999) National Generic Competence Standards, IEAust, Canberra. Jennings, Alan Ferguson JD (1995) ? Focussing on Communication Skills in Engineering Education‘, Studies in Higher Education, vol. 20, no. 3, pp. 305-314. Lee, Tong Fui (2003) ? Identifying essential learning skills in students‘ Engineering education‘, paper presented at the Annual HERDSA Conference, 6-9 July, Christchurch, New Zealand. Najar, Robyn L (2001) ? Facilitating the development of disciplinary knowledge and communication skills: Integrating Curriculum‘, paper presented at the Annual Meeting of the Australian Association for Research in Education, Freemantle, 2-6 December. Newell, James A, Marchese, Anthony J, Ramachandran, Ravi P, Sukumaran, Beena Harvey, Roberta (1999) ? Multidisciplinary Design and Communication‘, International Journal of Engineering Education, vol. 15, no. 5, pp. 1-7. Office of Sustainability, Department of Environment and Heritage, Government of South Australia, (2006) What is sustainability? viewed 21 July, 2006 356 Riemer, Marc J (2002) ? English and Communication Skills for the Global Engineer‘, Global Journal of Engineering Education, vol. 6, no. 1. Shwom, Barbara Hirsch, Penny (1999) ? Re-envisioning the writing requirement: an interdisciplinary approach‘, Business Communication Quarterly, March, vol. 62, i. 1, pp. 104-108. Vygotsky, L S (1978) Mind in Society, MIT Press, Cambr idge, Mass. Wake, B (2002) Engineering Communication Course Notes, School of Mechanical Engineering, The University of Adelaide, Adelaide. Wood, D, Bruner, J, Rose, S (1975) ? The Role of Tutoring in Problem Solving‘, Journal of Child Psychology and Psychiatry, vol. 17, pp. 89-100. Yong, E Missingham, (2006) Design Communication Course Notes, School of Mechanical Engineering, The University of Adelaide, Adelaide. Yong, E Missingham, (2005) Design Communication Course Notes, School of Mechanical Engineering, The University of Adelaide, Adelaide. Yong, E Missingham, (2004) Design Communication Course Notes, School of Mechanical Engineering, The University of Adelaide, Adelaide. 357

Tuesday, December 3, 2019

Renewable Energy Essay free essay sample

Renewable Energy Is Only Part of the Best Way to Prevent Climate Change In our present life we are going through two of the main hazardous changes on the Earth, global warming and greenhouse affects. We want mankind to survive for a very long time, but if we keep using non-renewable energies the way we do, do you think we will be able to survive for a long time? I strongly believe that renewable energy is only part of the best way to prevent climate change. In this essay I intend to present a sound argument with a clear line of thought and relevant evidence. Of course there are times when renewable energy is not the best concept to prevent climate change. It has its own flaws. One of the few disadvantages it has is that it is difficult to generate the quantities of electricity that are as those produced by traditional fuel generators. We will write a custom essay sample on Renewable Energy Essay or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page This would mean that we would have to reduce the amount of energy we use or built more energy which can be very expensive. Another drawback of renewable energy sources is the reliability of supply. Renewable energy often relies on the weather of its source of power. Hydro generators need rain to fill dams to supply flowing water. Wind turbines need wind to turn the blades, solar collectors need clear skies and sunshine to collect heat and make electricity. When these sources are unavailable so is the capacity to make energy from them. This can be unpredictable and inconsistent. Furthermore, the wildlife habitats are destroyed because of the wind farms. Many people think that it is a very cruel behaviour to the wildlife. They have lives like us, so how would we feel if some kind of new powerful creatures came and killed thousands of us, in a flash of a second? Even though there are negative points to renewable energy, there are lots more positive points that suggest renewable energy is only part of the best way to prevent global warming. However, humankind has no choice but to take renewable energy very seriously. It is gaining more respect daily and there are numerous reasons as to why this is the case. Renewable energy is as green as it gets as it is by today’s technical standards and it’s a marvellous method for fighting back against global warming. Fossil fuels are damaging the planet and this can be our way of doing something about that. The most important part is that renewable energy is commitment free and sustainable. It can be replenished so we can use as much of this power as we need and we can restock it or it will restock itself. The sun and wind are with us for the long haul. As sources of power they are just waiting to be tapped for our future energy requirements all over the world. Even more importantly, renewable energy produces little or no waste products such as carbon dioxide or other chemical pollutants, so has minimal impact on the environment. Similarly, wind energy is friendly to surrounding environment, as no fossil fuels are burnt to generate electricity. Moreover, wind turbines take up less space than the average power stations. Wind mills only have to occupy a few metres for the base; this allows the land around the turbine to be used for many purposes, for example agriculture. As well as recorded in 2010, just in the Golf of the Mexico, more than 7000 birds, sea turtles and dolphins died because of the oil spills in the region. So, if we don’t use non-renewable energy then there wouldn’t be any spills and there wouldn’t be any danger. Liming Zhou, research associate, professor at the University of New York conducted a study that claims ‘’Wind energy is among the fastest growing sources of energy. The US wind industry has experienced a remarkably rapid expansion of capacity in recent years’’ Zhou said. This suggests that wind energy can be really advantageous to us in the future. In conclusion, renewable energy is only part of the best way to prevent climate change. â€Å"This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning† Sir Winston Churchill. This is a perfect example to our renewable energy situation. It is not too late for us; we can start using renewable energy to prevent climate change in future. There are three kinds of people: those who make it happen; those who watch it happen; and those who wonder what happened. So why not be one of the ones who make it happen and protect our future generations. In my opinion we should use a lot more of renewable energy than we already do and use less of non-renewable energy so it can last for long and prevent the thermal blanket getting thicker.